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Abstract: Marine aquaculture has been expanding rapidly in recent years, driven by the growing
demand for marine products. However, this expansion has led to increased competition for space
and resources with other coastal zone activities, which has resulted in the need for larger facilities
and the relocation of operations to offshore areas. Moreover, the complex environment and exposure
to environmental conditions and external threats further complicate the sustainable development
of the sector. To address these challenges, new and innovative technologies are needed, such as
the incorporation of remote sensing and in-situ data for comprehensive and continuous monitoring
of aquaculture facilities. This study aims to create an integrated monitoring and decision support
system utilizing both satellite and in-situ data to monitor aquaculture facilities on various scales,
providing information on water quality, fish growth, and warning signs to alert managers and
producers of potential hazards. This study focuses on identifying and estimating parameters that
affect aquaculture processes, establishing indicators that can act as warning signs, and evaluating
the system’s performance in real-life scenarios. The resulting monitoring tool, called “Aquasafe”,
was evaluated for its effectiveness and performance by test users through real-life scenarios. The
results of the implemented models showed high accuracy, with an R2 value of 0.67. Additionally,
users were generally satisfied with the usefulness of the tool, suggesting that it holds promise for
efficient management and decision making in marine aquaculture.

Keywords: remote sensing; aquaculture; precision fish farming; machine learning

1. Introduction

The marine aquaculture industry has experienced significant growth in recent decades,
becoming a vital contributor to global food production. However, it also faces a variety of
challenges, both natural and human-induced. As most aquaculture operations take place
in the sea with little control over environmental conditions, the industry is susceptible to
threats from changes such as reduced oxygen or extreme temperatures that affect the growth
and survivability of farmed species and increased costs, events that are more frequent
due to climate change [1]. Greece is one of the main producers of European seabass
(Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) in Europe, representing over
60% of the total European production according to the FEAP [2]. Greek aquaculture has
a significant contribution to the national economy as it represents 65% of fish production
and is expected to keep an annual mean growth rate of 7% by 2030 according to the annual
report of the Federation of Greek Maricultures (FGM) and the strategic development
plan [3]. Given this context, the promotion of sustainable development in the marine
aquaculture industry is crucial, not only for Greece but also for the EU, as it is considered
one of the key pillars of the Blue Growth strategy.

Appl. Sci. 2023, 13, 6122. https://doi.org/10.3390/app13106122 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13106122
https://doi.org/10.3390/app13106122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7109-7132
https://orcid.org/0000-0003-4451-2916
https://orcid.org/0000-0002-8867-5496
https://orcid.org/0000-0002-1916-1600
https://doi.org/10.3390/app13106122
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13106122?type=check_update&version=1


Appl. Sci. 2023, 13, 6122 2 of 25

Apart from the interaction with coastal zone activities, aquaculture operations demand
continuous and accurate monitoring. While in-situ data often present inconsistencies in
terms of both quality and spatial coverage, remote sensing provides new opportunities for
monitoring the ocean through frequent and cost-effective coverage of the entire Earth’s
surface, even in remote locations. The Sentinel satellite missions are a part of the European
Earth Observation Program “Copernicus”, which offers free data in various spectral regions
(radar, optical, infrared) and at various spatial resolutions. The Sentinel missions, along
with the CMEMS (Copernicus Marine Environmental Monitoring Service) digital repository,
provide data on the oceans through advanced instruments and models, with a wide range
of spatial and temporal resolutions. The combination of these data can provide valuable
information on the quality of the environment in aquaculture areas.

The rapid growth of aquaculture and the continuous pressure the industry faces
nowadays are leading to the relocation of facilities to offshore areas. This is carried out
in order to minimize the negative impacts to the coastal zone; however, it brings along
various challenges and difficulties. To mitigate the challenges and to improve the current
practice towards a more sustainable aquaculture sector, researchers have increasingly
turned to “precision farming” techniques to develop new, innovative methods and tools
for monitoring and managing farm operations. The “precision farming” approach, which
is already well established in land-based farming and has yielded positive results, aims to
improve the sustainability of marine farming by reducing costs, increasing data accuracy,
and reducing the reliance on human labor [4].

Marine farming, however, presents its own set of difficulties due to the complex na-
ture of the environment, the diversity of species being farmed, and exposure to external
threats. Despite the abovementioned challenges, the concept of “precision fish farming”
has garnered significant attention among researchers, leading to the development of new
technologies and methods to improve monitoring and management of day-to-day oper-
ations [4–11]. Precision fish farming, as outlined by Føre et al. [4], aims to apply control
engineering principles in fish production to boost farm monitoring, control, and document
biological processes. This approach allows commercial aquaculture to shift from a tradi-
tional, experience-based production method to a knowledge-based method that employs
cutting-edge technologies and automated systems to tackle the challenges of aquaculture
monitoring and management. The goal of precision fish farming is to improve the accuracy,
precision, and repeatability of farming operations.

The significant expansion of aquaculture poses both risks and opportunities that re-
quire careful evaluation and appropriate measures for adaptation. Aquaculture procedures
are complex due to the presence of numerous environmental drivers, such as temperature,
extreme events, and harmful algal blooms, their interactions with production systems, and
knowledge gaps about fish responses [1,12]. To support and facilitate decision making in
this context, Decision Support Systems (DSSs) have been proposed as appropriate tools.
DSSs are computer-based information systems designed to aid the decision-making process
in complex situations, using data, models, and algorithms to generate insights and provide
users with timely and accurate information to help them evaluate and compare alterna-
tive options. Typically, the decision-making process with a DSS involves several steps,
including data gathering, analysis, and visualization, scenario analysis, and evaluation of
alternatives. In addition, a DSS must provide decision makers with supporting information
to enable strategic decisions for promoting industry sustainability in the coming decades.
Furthermore, a DSS must achieve a balance between containing sufficient information and
being user-friendly for accessibility [13].

The goal of this study is to examine how satellite technology can assist in addressing
the issues that arise from the rapid growth of fish farming. The main objectives are as
follows: (a) to determine which parameters have an impact on aquaculture processes and
how remote sensing can aid in their assessment, (b) to establish what indicators could be
used as “warning signs” and their corresponding appropriate thresholds, and (c) to evaluate
the system’s performance in real-life scenarios. This paper presents a web-based platform
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called “Aquasafe” which serves as a decision support system that constantly monitors
fish farming operations and provides early warnings for potential risks. It combines
satellite and in-situ data to give comprehensive insights and alerts to farm operators. The
platform offers a combination of satellite data, in-situ measurements, and meteorological
information, providing forecasts and alerts to aid in the effective management of fish
farming operations. Ultimately, the system is intended to aid in the effective management
of fish farming operations by providing valuable, accurate information about current
conditions and production.

2. Materials and Methods
2.1. Overview of Aquasafe Structure

Aquasafe is a web-based platform created through a collaborative effort that brought
together scientists and stakeholders. Aquasafe employs data from multiple sources to
calculate important parameters, which are then utilized to derive indicators serving as
warning signs for supporting aquaculture farm management. Aquasafe is structured into
four main pillars: (a) input data, (b) estimated parameters, (c) indicators, and (d) web-based
platform (Figure 1).
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and (d) Aquasafe web-based platform.

(a) The input data, which include information from both satellites and in-situ measure-
ments, are used to determine the relevant parameters (Figure 1a).

(b) The estimated parameters, which include water temperature, dissolved oxygen,
chlorophyll-a, biogenic oil film, and fish growth metrics, are derived from the process-
ing of the input data and are then combined to determine the indicators or “warning
signs” (Figure 1b).

(c) Five indicators based on the aforementioned parameters, namely algal blooms, sea sur-
face temperature, saturation of dissolved oxygen, fish growth, and wind speed/gusts,
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were identified. These indicators are used to alert the administrator or operator of
the farm of potential threats and required actions (Figure 1c). All the indicators are
a combination of two or more parameters, except for the sea surface temperature,
which is used directly. More details on the combinations and the thresholds for the
alerts are described in Section 2.4.

(d) All of the elements described above are integrated and visualized into the Aquasafe
web-based platform (Figure 1d), providing forecasts and alerts to the administrator or
operator of the farm.

2.2. Data

Aquasafe utilizes data from both satellites, models, and in-situ measurements to ac-
quire meteorological, physical, biochemical, and economic information about fish farms
and their surrounding areas (Figure 1a). The use of multiple data sources has the advantage
of providing a more comprehensive view of the farming areas. Satellites provide multi-
spectral, thermal, and SAR data, which are used to estimate several parameters. In-situ
measurements serve to validate the satellite estimations and provide additional informa-
tion about the farmed species and their growth. Additionally, meteorological data such as
winds, rainfalls, and cloud coverage, as well as data about extreme weather events, are also
taken into consideration.

2.2.1. Satellite and CMEMS Data

The satellite data used in this study were obtained free of charge from the Copernicus
services. Specifically, we utilized data from Sentinels 1, 2, and 3, as well as the Copernicus
Marine Environment Monitoring Service (CMEMS). The input data sources and processing
levels, as well as the available spatial and temporal resolution, are presented in Table 1.

Table 1. Input data sources, processing levels, and resolutions are presented below.

Provider Copernicus Open Access Hub 1 Eumetsat Data Services 2 Copernicus Marine Service 3

Platform Sentinel-1 Sentinel-2 Sentinel-3 CMEMS
Sensor SAR Multispectral Thermal Model
Format Raster Raster Raster Raster

Processing Level 1, 2 1, 2 2 4
Spatial Resolution 30 m 10 m, 20 m 300 m, 1000 m 1 km, 4 km

Output Biogenic Oil Film Chlorophyll-a Sea Surface Temperature Dissolved Oxygen
1 https://scihub.copernicus.eu (accessed on 20 March 2023). 2 https://data.eumetsat.int (accessed on
20 March 2023). 3 https://marine.copernicus.eu (accessed on 20 March 2023).

Sentinel-1 is a Synthetic Aperture Radar (SAR) mission of the Copernicus program,
funded by the European Commission in partnership with the European Space Agency
(ESA), which aims to provide data for ocean and land monitoring. The mission provides
data regardless of weather and light conditions, as well as cloud coverage. The input data
used in this study were Level-1 Ground Range Detected (GRD) products projected onto a
ground range using an Earth ellipsoid model. These data were used for the detection of
surface oils near fish farming sites. According to previous research, VV polarization offers
a better clutter-to-noise ratio and is preferred for the detection of sea surface oils, which are
indirectly detected as differences in sea surface roughness [14–18].

Sentinel-2 mission is mainly designed as a land-monitoring mission but is widely
used for coastal waters as well. Sentinel-2 twin satellites (Sentinel-2A and Sentinel-2B)
are equipped with a multispectral sensor (Multispectral Imager—MSI, manufacturing
led by Airbus Defence and Space, Friedrichshafen, Germany, developed and operated by
European Space Agency) with 13 spectral bands at 10, 20, and 60 m of resolution covering
the optical, near-infrared, and shortwave infrared part of the spectrum, thus providing
high-resolution imagery with global coverage every 5 days (https://sentinels.copernicus.e
u/web/sentinel/missions/sentinel-2 (accessed on 20 April 2023)). Sentinel-2 data were

https://scihub.copernicus.eu
https://data.eumetsat.int
https://marine.copernicus.eu
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
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used for the estimation of chlorophyll-a and dissolved oxygen, as well as for the detection
of surface oils near the farms. Both Level-1C and Level-2A data were exploited, and they
were georeferenced in WGS84/UTM automatic zone projection.

Sentinel-3 imagery was also found to be appropriate for such applications due to
its spatial and temporal properties. Sentinel-3 is designed for ocean color applications
specializing in estimating various Essential Oceanographic Variables (EOVs) on the surface
layer (https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3 (accessed on
20 April 2023)). Ocean color data are produced by the imagery acquired through the
OLCI sensor with a spatial resolution of 300 m. OLCI’s products can be used to retrieve
surface-level chlorophyl-a concentration, total suspended matter concentration, the light
attenuation coefficient, and other EOVs. The satellites are also equipped with the SLSTR
sensor, which is used for the SST estimation. The resolution of the datasets varies between
the sensors with OLCI having 300 m spatial resolution products and SLSTR 1000 m. The
footprint of the imagery ensures the coverage of large marine areas which in favorable
days can contain the whole of the Greek seas. Furthermore, the temporal coverage of the
mission is estimated between 1–2 days, enabling continuous monitoring of specific and
wide marine regions.

The Copernicus Marine Environment Monitoring Service (CMEMS) provides regu-
lar and systematic biogeochemical and physical information on the marine environment.
Within the context of our study, we utilized Level-4, daily, gap-free satellite observations
for chlorophyll-a concentration and sea surface temperature from multi-platform observa-
tions. We used CMEMS data to describe environmental conditions and investigate their
correlation with dissolved oxygen concentration (DO). By understanding this relationship,
in-situ observations of DO were used with our previously published work [19] to train a
machine learning regression model.

2.2.2. In-Situ

In-situ data are being used for both validation and calibration of our models and
include field measurements of physicochemical parameters such as DO and SST from
the selected fish farms. Specifically, comparison of these measurements with the satellite
data offers means of validation since it allows the evaluation of the system’s performance.
Moreover, archiving the in-situ recordings provides time series, which are essential for
calibrating and improving the models at a later stage. Additionally, specifications about
fish and cages for each farm are being manually input from the users and can be edited
at any time. This serves a dual function. On the one hand, the performance of the fish
model can be evaluated while the obtained data can be used in future parametrization and
improvement. On the other hand, it allows a real-time adjustment of the model to correct
for potential deviations. This is achieved by resetting the initialization of the simulations
based on the most recent input provided by the user.

2.2.3. Meteorological

Meteorological products were acquired from OpenWeatherMap (https://openweathe
rmap.org/ (accessed on 20 April 2023)) API. The weather data collection we used is free of
charge and provides current weather and 5-day forecast for any location on the globe with
a 3-h step. From the available weather data, we included temperature, humidity, pressure,
wind speed and direction, wind gusts, and precipitation. OpenWeatherMap provides many
kinds of weather maps and graphs.

2.3. Parameters

The relevant parameters were divided into two categories: those that pertain to the
water and surrounding environment and those that pertain to the farmed species and the
farm itself (Figure 1b). Parameters that affect the water, which is the natural habitat of the
farmed species and thus has a direct or indirect impact on all organisms, are considered the
most crucial. Among these, dissolved oxygen is considered the most important, but other

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3
https://openweathermap.org/
https://openweathermap.org/
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parameters such as water temperature and chlorophyll-a can also have an indirect effect on
the survival and well-being of the farmed species. The parameters are estimated to a large
extent using satellite data and are validated through in-situ measurements. Parameters
related to the farm include the feeding rate, the oxygen consumption rate, and the increase
in fish weight and biomass.

2.3.1. Water Quality Parameters

The satellite data and information acquired from the Copernicus Marine Environment
Monitoring Service (CMEMS) and Sentinel missions were used to achieve a comprehensive
understanding of ocean dynamics and estimate the water quality parameters (Figure 1b). To
ensure the highest accuracy of our estimates, we performed recommended preprocessing
and data correction procedures, as well as an interpolation technique to further enhance
the resolution and detail of the information (Figure 2).
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Chlorophyll-a (chl-a): Satellite data are widely used for the detection of optically
active parameters such as chlorophyl-a (chl-a), total suspended matter, and temperature.
Parameters described as “optically active” affect the optical properties of water at specific
wavelengths, causing alteration to the color of the water and consequently to the reflectance
values of the satellite images. Satellites Sentinel-2 (MSI) and Sentinel-3 (OLCI) are widely
assumed to provide reliable information about concentrations of chlorophyll-a with al-
gorithms based on the inherent optical properties of water bodies. More specifically, the
algorithm Case 2 Regional Coast Color (C2RCC) was first developed from Doerffer and
Schiller (2007) [20] and, after several improvements, is now applicable to all current ocean
color sensors, including Sentinel-2 MSI and Sentinel-3 OLCI [21] (currently supported sen-
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sors include MERIS, OLCI, MODIS, VIIRS, SeaWiFS, OLI, and MSI). C2RCC is based on an
extended database of simulated water leaving reflectances and related top-of-atmosphere
radiances. The processor includes two parts, the atmospheric correction part and the
in-water part. The main input in the atmospheric part is the top-of-atmosphere reflectance,
and the main output is the directional water leaving reflectance. The in-water modeling is
performed using the Hydrolight model and uses as input the atmospherically corrected
reflectances. After excluding the outliers, the inherent optical properties of the water (IOPs)
are estimated and transmitted to the forward model. The IOPs are then transformed to
chlorophyll-a concentration and total suspended matter [21].

Sea Surface Temperature (SST): Sea surface temperature (SST) data have already been
processed to Level-2 by the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) at a resolution of 1 km and are used for further analysis. According
to Sentinel-3 SLSTR User Guide, SST measurement is obtained through a highly accurate
calibration of the three infrared channels at 3.74, 10.85, and 12 µm (S7-S8-S9), which are
used to correct for water vapor atmospheric absorption (split window during day and triple
window during night) and observing the same on-ground pixel through two atmospheric
path views for correction of aerosol effects. It is important to note that SLSTR returns SST
measurements for the ocean “skin”. Because thermal infrared radiation does not penetrate
far into the water column, the infrared radiometric temperature is only that of the top few
tens of micrometers. The temperature of the sea skin surface is typically a few tenths of
a degree cooler than the temperature a few centimeters below. Oceanographically, SST is
considered a measure of the temperature in the top 10 cm.

Dissolved Oxygen (DO): Dissolved oxygen is not included in the optically active
parameters; therefore, it is unlikely to measure its concentration directly from the reflection
values of satellite sensors. However, research has shown that it can be estimated indirectly
because of its correlation with other parameters, such as temperature and chl-a [22,23].
Based on this relation, the concentration of dissolved oxygen was estimated using regression
analysis and multisource data [19]. Our approach was based on a Support Vector Regression
model, using data from CMEMS, Sentinel-3 and Sentinel-2, and in-situ observations. The
values of chl-a and SST were stored in an array created for every set of coordinates, also
including the values of one, two, and three days prior to the sampling. The technical
aspects regarding the SVR model’s usage, training, optimization, and testing are extensively
discussed in our earlier publication [19].

Biogenic Oil Film (BOF): Surface oils can be detected in both SAR and optical images
based on their effect on the sea surface. They affect the sea surface roughness, causing
elimination of short gravity capillary waves, which appears as a dark formation in SAR
imagery [14–17]. Additionally, they absorb most of the visible light, resulting in lower
reflectance values, affecting the color of the sea surface, and appearing darker than the
surrounding area in optical images. Thus, according to previous research [14,24–28],
multispectral imagery can also be used for the detection of sea surface oils. To benefit from
the advantages of the different capabilities of each sensor, we used a combined approach to
detect the surface oils near the cages, using both Sentinel-1 and Sentinel-2 data, in order to
identify the dark formations and classify them as “biogenic oil film” or lookalike [14]. The
detected objects were vectorized and classified and then compared with in-situ photos to
validate the methodology.

Satellite data availability is greatly dependent on the atmospheric conditions at the
time of acquisition. Poor atmospheric conditions and cloud coverage hinder the ability of
the sensors to make accurate observations of the Earth’s surface, often leading to faulty or
missing measurements. However, successful aquaculture monitoring needs a continuous
stream of data in order to be useful in detecting near real-time threats to the facilities and
assisting in meaningful management decision making. The most widespread technique
in remote sensing applications for filling missing pixels is spatial interpolation. In this
application, a spatiotemporal kriging technique is applied to interpolate missing informa-
tion. Kriging, as a family of interpolation methods, scopes to model the spatial variability
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of the parameter in question by its anisotropy [29]. This is accomplished through the
construction of a semivariogram which depicts the parameter’s spatial autocorrelation at
various lagged distances. Spatiotemporal kriging is a more specialized form of ordinary
kriging in which temporal variability of the parameters is taken into account [30]. In this
case, a 3D semivariogram is constructed that calculates the temporal anisotropy along with
the spatial. Spatiotemporal interpolation is conducted for both Sentinel-3-derived chl-a and
SST through the gstat package in R. The interpolation results are projected into a common
300 m spatial grid which enables further co-processing of the results.

2.3.2. Fish Growth Parameters

The parameters relating to the growth of the fish in the fish farm are directly obtained
from a bioenergetic model that simulates their metabolism under the prevailing environ-
mental conditions. The model is based on the Dynamic Energy Budget (DEB) theory, which
is a quantitative and qualitative framework for describing the metabolism throughout the
life cycle of an organism, in this case fish, under dynamically changing environments [31]
and has been widely applied in fish research [32–34]. In this study, models were developed
for three fish species, namely the European sea bass, the gilthead seabream, and the meagre
(Argyrosomus regius) using experimental and literature data. The models have been pre-
sented in detail in previous work and have been validated against production data from
commercial farms, showing, overall, good performance and adequate capacity to capture
the seasonal growth patterns of the fish under various rearing conditions. For further
details on model development and validation, we refer to Stavrakidis-Zachou et al. [35,36]
and the AquaExcel2020 deliverable D5.6 (https://aquaexcel2020.eu/results (accessed on
20 April 2023)).

In the Aquasafe platform, the fish models are used to provide information to the system
user about anticipated changes in growth parameters. Specifically, the models receive as
input the water quality parameters at the farm area as well as the user specification of the
initial conditions at each cage (species, number of fish, initial size) and simulate growth
for the following days. The generated predictions include the weight of the fish, the feed
consumption rate, the total fish biomass, and the oxygen consumption rate. All parameters
are reported as average values along with the standard deviation for the fish population at
each cage.

2.4. Indicators

Based on the parameters that have been identified as affecting the survival and growth
of the farmed species, we have developed five indicators that can be used as warning signs,
along with appropriate thresholds (Figure 1c). The five indicators are: (i) the concentration
of algae (algal blooms), (ii) sea surface temperature, (iii) the saturation of dissolved oxygen,
(iv) the fish growth, and (v) the wind speed and gusts. By setting appropriate thresholds
for these indicators, the system will alert the administrator or the operator of the farm of
potential threats and required actions.

(i) Algal Blooms: Most marine aquaculture facilities consist of bivalve mollusks, finfish,
and crustaceans and are placed in estuarine or coastal locations [37]. Such areas are
more vulnerable to eutrophication risk due to the large supply of nutrients, mainly
phosphorus and nitrogen, caused by human activities (i.e., sewage systems, industrial
waste, agricultural activities, etc.). These conditions combined with unusually high
water temperature, extreme weather events, and low water circulation can lead to
the overgrowth of microalgae (algal blooms), which can range from mild to very
intense [38]. The overgrowth of algae blocks sunlight to the lower layers of water
bodies and can lead to oxygen depletion, causing critical conditions for the survival
of aquatic organisms. Some types of algae blooms also produce toxins, which can
be harmful to human health and aquatic life [37,38]. The appropriate threshold for
chlorophyll-a to avoid algal blooms can vary depending on the specific body of water
and its intended use. An initial threshold of 10 micrograms per liter was selected as

https://aquaexcel2020.eu/results
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the default value, though the user is able to manually adjust this parameter to suit the
specific circumstances.

(ii) Sea Surface Temperature: The sea surface temperature (SST) plays a crucial role in
the survival and growth of farmed fish. Different species have different optimal
temperature ranges for growth and survival. For example, gilthead seabream and
European seabass are able to tolerate a wide range of SSTs ranging from 5 to 34 ◦C
and 2 to 35 ◦C accordingly [39], but their optimal temperature ranges vary depending
both on the species and the growth stage. Gilthead seabream thrives in temperatures
between 18 and 28 ◦C, European seabass between 17 and 24 ◦C [40,41]. They may
be able to survive in a wider range of temperatures; however, prolonged exposure
to temperatures outside of these optimal ranges can negatively affect the growth
and survival of these species. High temperatures can lead to decreased growth rates
and increased susceptibility to disease, while low temperatures can lead to reduced
feed intake and metabolism [39]. Therefore, it is important to ensure that the SST in
aquaculture facilities stays within the appropriate thresholds to ensure the well-being
of the farmed species.

(iii) Dissolved Oxygen Saturation: Dissolved oxygen is a key indicator that affects the
survival and well-being of all aquatic organisms and is measured in mg/L [42,43].
The solubility of oxygen in water is affected by the temperature and salinity of
the water, and oxygen levels are typically expressed as the percentage of oxygen
that can be dissolved in the water at those conditions compared to the maximum
(saturation). Saturation levels at a particular level of temperature and dissolved
oxygen can be obtained from solubility tables or calculators (https://www.engine
eringtoolbox.com/oxygen-solubility-water-d_841.html (accessed on 20 April 2023)),
and it is critical for the respiration and growth of fish. In order to ensure suitable
conditions for farmed fish, it is important to maintain appropriate levels of dissolved
oxygen saturation. According to the “Manual for the Wellbeing of Mediterranean
Fish”, the appropriate threshold for dissolved oxygen saturation in water for farmed
fish is generally considered to be between 70% and 90% [43,44]. However, this can
vary depending on the species of fish and the specific conditions of the farm. For
example, some fish species may require higher levels of oxygen saturation than others,
and certain conditions such as high water temperature or low water flow can also
affect the oxygen requirements of fish. Gilthead seabream and European seabass
are tolerant to lower dissolved oxygen levels, but it has been reported that a long
exposure to such conditions may have negative effect on their immune system [45,46].
At a 40% oxygen saturation level, they may suffer from a decrease in feed intake and
growth, as the low oxygen levels impede their ability to properly absorb nutrients and
support their overall development [47,48]. That being said, saturation levels alone
may be misleading for assessing danger at the farm level. For example, due to the
solubility of oxygen correlating negatively with temperature, it is possible that the
same low saturation levels that are detrimental at a high temperature may be sufficient
for normal fish respiration at a lower temperature. In that regard, it has been reported
that if dissolved oxygen levels fall below 5.5 mg/L, negative impacts on fish at all life
stages occur [44]. Given the information mentioned above, we have established three
levels of dissolved oxygen: safe levels, which are above 70%; critical levels, which
fall between 40 and 70%; and danger levels, which are below 40%. Additionally, any
values falling below 5.5 mg/L are considered critical.

(iv) Fish growth and target weight: The appropriate marketable weight of farmed fish
varies depending on the species and consumer preferences. For example, in the case of
gilthead seabream and European seabass, the typical marketable weight is generally
considered to be portion sized (300–400 g), but demand for larger sizes (600–800 g) also
exists [49–51]. However, this can vary depending on the specific farming conditions
and the market demand. For gilthead seabream, it is expected to reach the marketable
weight within 12–18 months of farming, while European seabass takes slightly longer,

https://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html
https://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html
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typically reaching the marketable weight within 18–24 months [33]. On the other hand,
meagre, an emerging species in Mediterranean aquaculture with high commercial
potential, grows faster and reaches market size of 700 g within a year, while its
weight may exceed 2 kg in only two years at sea [52]. It is important to note that
reaching the marketable weight is not the only consideration when determining the
harvesting of the fish. Other factors that should be taken into account include the
fish’s health, growth rate, and the overall condition of the farm [49]. Additionally,
the market demand for a certain size of fish also affects the appropriate marketable
weight. Overall, appropriate marketable weight of farmed fish is a crucial aspect of
the fish farming industry. It ensures that the fish are of good quality and are ready
for market and also affects the profitability of the farm. The relevant alert is triggered
based on a user-defined threshold and the predicted change in weight (∆Weight) as
forecasted by the growth model.

(v) Wind Speed/Gusts: Wind speed and gusts can have a significant impact on fish farms,
as they can cause damage to the infrastructure and equipment, as well as stress and
injury to the fish. Strong winds can cause waves and currents that can damage nets,
pens, and other equipment, leading to costly repairs and potential loss of fish via
direct mortality or escapees [53]. Additionally, high winds can also create difficult
conditions for fish farmers, making it difficult to work and maintain the farm. Setting
a general rule for the acceptable wind speed limits is a challenge due to the varying
factors that need to be taken into consideration, such as the type of fish, the location
of the farm, and the specific conditions of the farm. According to empirical rules, the
authors established a threshold where wind speeds exceeding 15–20 knots (8–10 m/s)
and wind gusts exceeding 25 knots (13 m/s) are considered dangerous for the fish
farm [54]. By using the warning tool, farmers can take measures such as reducing the
amount of feed given to the fish, which reduces oxygen demand and decreases stress
on the fish, in order to prepare for and respond to high winds and gusts. Through
monitoring and managing wind conditions, fish farmers can minimize the negative
effects on both the fish and the farm infrastructure, ultimately contributing to the
sustainability and profitability of the farm.

2.5. System Architecture

The “Aquasafe” web platform is a custom content and data management platform
developed in the framework of a national project. The implementation of the application
has been based on modern and open-source software technologies. The platform is based on
a 3-tier architecture (Figure 3). The data tier is supported by a spatially enabled Relational
Database Management System (RDBMS). The application (business logic) tier has been
implemented by utilizing Application Programming Interfaces (APIs) and by deploying
data harvesting, data curation, and product deriving mechanisms. The APIs concern
both the content-related elements and operations of the platform, as well as geospatial
information services’ provisioning. The geospatial services are based on interoperable and
de juro/facto ISO/OGC standards, i.e., Web Mapping Service (WMS) and Web Feature
Service (WFS). The web interface (presentation tier) harnesses the APIs’ capabilities to
provide the derived functionality.



Appl. Sci. 2023, 13, 6122 11 of 25

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 32 
 

 

RDBMS, object-oriented PHP (backend) with the user interface (frontend) implemented 
in modern Javascript libraries (ReactJS, OpenLayers). 

 
Figure 3. Aquasafe logical architecture. 

3. Results 
3.1. User Interface 

The Aquasafe web-based platform is designed to be user-friendly and easy to navi-
gate, making it accessible for users of all experience levels. The platform offers a wide 
range of features and functions to allow viewing and accessing the available information 
in a variety of formats including graphs, tables, and maps, as well as access historical data 
and forecast predictions for the coming days (Figure 4). It is arranged in four pages, 
namely: (a) map, (b) cages, (c) models, and (d) alerts. In the left panel, users can access 
information about each page. 
(a) The page “Map” is also the platform’s landing page (Figures 5 and 6). On the right 

side of the map, users can choose and view environmental and meteorological pa-
rameter layers. On the left side of the map, users can view and mark the relevant 
alerts. Additionally, the page provides users with tools to navigate through space 
and time. 

(b) The page “Cages” allows users to access information concerning their farms and 
cages. The users can view, edit, or delete cages or add new ones. Users have the abil-
ity to access detailed information about specific cages also by selecting them from the 
map. This level of customization allows users to better manage their operations and 
make informed decisions. 

(c) The page “Models” includes the results of the biological model, which predicts fish 
growth and food intake, as well as forecasts for the next days (Figure 7). It is 
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The platform development has been based on custom development with free and
open-source software components. Technologies involved are PostgreSQL/PostGIS as
RDBMS, object-oriented PHP (backend) with the user interface (frontend) implemented in
modern Javascript libraries (ReactJS, OpenLayers).

3. Results
3.1. User Interface

The Aquasafe web-based platform is designed to be user-friendly and easy to navigate,
making it accessible for users of all experience levels. The platform offers a wide range
of features and functions to allow viewing and accessing the available information in a
variety of formats including graphs, tables, and maps, as well as access historical data and
forecast predictions for the coming days (Figure 4). It is arranged in four pages, namely:
(a) map, (b) cages, (c) models, and (d) alerts. In the left panel, users can access information
about each page.

(a) The page “Map” is also the platform’s landing page (Figures 5 and 6). On the right side
of the map, users can choose and view environmental and meteorological parameter
layers. On the left side of the map, users can view and mark the relevant alerts.
Additionally, the page provides users with tools to navigate through space and time.

(b) The page “Cages” allows users to access information concerning their farms and cages.
The users can view, edit, or delete cages or add new ones. Users have the ability to
access detailed information about specific cages also by selecting them from the map.
This level of customization allows users to better manage their operations and make
informed decisions.
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(c) The page “Models” includes the results of the biological model, which predicts fish
growth and food intake, as well as forecasts for the next days (Figure 7). It is important
to note that every manual user edit on the original data will be accordingly adapted to
the model. Users can also view the results of the model and the forecasts for a specific
cage by selecting it from the map.

(d) The page “Alerts” allows users to view the notifications and mark them as “read” or
delete them. By selecting a notification, the user can view the details and the specific
cage in which it is referred to. The alerts also appear on the landing page and in the
form of a list.
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Figure 5. Aquasafe web-based platform landing page, showing relevant information about fish
cages, model results, and alerts on the left panel and environmental and meteorological parameters
on the right side of the map. On the map, the added cages appear as blue points labeled based
on the user’s preference. In this example, the points have not been positioned on the cages for
visualization purposes.
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3.2. User Experience

The Aquasafe user interface was evaluated by relevant experts in the field, including
scientists and stakeholders, through a user satisfaction survey. Participants were given
specific scenarios and step-by-step instructions and were asked to provide feedback on the
amount of time it took to complete each task, the clarity of the instructions, their overall
satisfaction with the system, and any suggestions for improvement. The survey results
showed that 27.3% of users were able to complete all tasks in under ten minutes, 54.5% took
between 10 and 20 min, and 18.2% took longer than 20 min (Figure 8). The majority of users
found the instructions clear and easy to follow (82%), and over half of the participants
reported being quite (28%) or completely (55%) satisfied with their interaction with the
platform and the results they achieved (82%) (Figure 9). However, some users did express
difficulty with navigation and searching for specific information, as well as exporting
results. Despite these minor criticisms, the overall feedback from users was positive, with
suggestions for further improvements to the platform.
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Figure 8. The majority of the users were able to finish the tasks in less than 20 min. More specifically,
only 18% of the users needed more than 20 min to complete the tasks, while 55% finished in 10–20
min and 27% in less than 10 min.
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Figure 9. According to the satisfactory survey, the majority of the users found the instructions clear
and easy to follow and the interaction with the platform quite or completely satisfying.

3.3. Real-Life Cases

In order to validate the performance of the Aquasafe web-based platform and test
the applicability of the developed fish growth models to real-life scenarios, we showcased
the platform’s performance on three different aquaculture sites. The sites include a pilot
aquaculture farm operated by HCMR in Souda Bay, Crete, South Aegean Sea, a commer-
cial fish farm operated by Plagton S.A. in Astakos, Aetolia-Acarnania, Ionian Sea, and
a commercial aquaculture farm in Agrilia, Lesvos Island, North Aegean Sea (Figure 10).
Specifically, selected model outputs for the 2022 growing season (1 April–1 October) are
shown comparatively for the three sites while field data from the HCMR farm are also
provided as a form of model validation. Additionally, to show typical growing scenarios,
cages with excessive starting populations (overstocked) were created to demonstrate the
capabilities of the tool in generating relevant alerts for oxygen availability. The experiments
were conducted for the years 2022–2023, and the results are presented in Sections 3.3.1
and 3.3.2.
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Figure 10. The map shows the three areas that were used as case studies to validate the performance
of Aquasafe web-based platform: (a) HCMR pilot aquaculture farm (Souda), (b) PLAGTON S.A.
commercial fish farm (Astakos), and (c) AVRAMAR S.A. commercial fish farm (Agrilia).

3.3.1. Fish Growth Model Performance

The following figures show selected outputs from the three study areas. Reference
cages of 300 m3 volume were created for the three study areas and were stocked with either
of the three fish species at varying sizes. Next, the entire 1 April 2022–1 October 2022 grow-
ing season was simulated taking into account the respective environmental parameters.
As seen in Figures 11 and 12, the tool performed well, not only realistically depicting the
seasonal growth patterns of the considered species but also capturing quantitative differ-
ences across the study areas. Specifically, growth predictions of both European sea bass and
meagre from the Souda pilot farm closely matched the corresponding field measurements
regarding fish weight, thus corroborating the validity of the models. Moreover, some
notable differences were observed among the aquaculture sites. The weight increase was
the fastest at the Souda site and the slowest in Agrilia, with Astakos exhibiting intermediate
values. While data for validating such differences are not provided, their interpretation
is intuitively found in latitudinal differences among them. Namely, the area exhibiting
the highest growth rates (Souda) is also the southernmost, thus corresponding to higher
temperatures which are beneficial for growth.
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Another output related to fish that the platform generates is fish respiration, which
is a useful metric for evaluating the oxygen requirements at the farm level. Taking the
example of gilthead seabream, we show that the model captures the typical seasonal
patterns in oxygen consumption across the three aquaculture sites (Figure 13). In particular,
respiration is predominantly affected by temperature and body size, and this is reflected by
the steady increase in the oxygen consumption rate as the simulation progresses through
spring (days 0–60), eventually reaching the highest values during the summer months
(days 60–150). Quantitative differences exist here as well, with the southernmost and
warmest area (Souda) exhibiting higher oxygen consumption values compared to the other
two—a pattern similar to that of growth rates.
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Figure 13. Oxygen consumption rate for gilthead seabream during the period
1 April 2022–1 October 2022. The lines represent the Aquasafe platform’s outputs at the three
study areas.

Finally, the platform generates alerts when oxygen availability is low, which typi-
cally occurs in densely stocked populations. Here, this platform capability is explored
by simulating biomass changes for cages with low (<10 kg/m3) and high (>30 kg/m3)
stocking densities. As seen in Figure 14, in a low-density scenario the fish continue to grow
uninhibited throughout the season resulting in increasing biomass without the appearance
of oxygen alerts. Conversely, in high stocking density scenarios the oxygen availability
reduces and eventually becomes critical for the fish as they progressively increase in size
with analogous increase in their oxygen requirements. Specifically, in all three sites the
platform generated oxygen alerts once the simulation entered the summer months. More-
over, the alerts appeared sooner for the site that showed the fastest increase in biomass
(Souda, day 67) compared to the other two, for which they appeared one month later
(days 84–89). This feature may be of great value for aquaculture operators in regard to
managing the cage populations.

3.3.2. Dissolved Oxygen Model Performance

To evaluate the performance of the dissolved oxygen model, we used 20% of the
dataset and calculated two metrics: R-squared (R2) and mean absolute error (MAE). R2 is
used to examine the fitness of the model, and it expresses how well the regression line
approximates the real data point without considering all parameters. On the other hand,
the MAE expresses the average distance between the estimated and the real values, which
is useful to calculate the precision (Equation (1)):

MAE = ∑n
i=1
|yi − xi|

n
(1)

where yi is the predicted values and xi the measured values.
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Figure 14. Biomass progression for gilthead seabream during the period 1 April 2022–1 October 2022
under low (<10 kg m3) and high (>30 kg m3) stocking density. The lines represent the Aquasafe
platform’s outputs at the three study areas, while the points denote alerts generated by the system.

MAE was found to be 0.33, indicating that the average distance between the predicted
and real values is 0.33 mg/L (Table 2). This value is considered acceptable for most real-life
applications for the estimation of dissolved oxygen. The residuals were well balanced
around zero, indicating the absence of any systematic error. The measured values ranged
between 4.5 and 8 mg/L, and the predicted values ranged between 5.5 and 7.5 mg/L
(Figure 15).

Table 2. To evaluate the performance of the dissolved oxygen model, we used 20% of the dataset,
which corresponds to 136 observations, and calculated two metrics: R-Squared (R2) and mean
absolute error (MAE).

Regression Statistics

R-Squared 0.67
Mean Absolute Error 0.33
Observations 136

R2 value was calculated as 0.67 (Table 2), indicating its suitability for real-world
applications. Furthermore, the time-series plot indicated distinct seasonality in temperature
and dissolved oxygen levels (Figure 16). Specifically, temperatures were higher during
summer months (June to September), while dissolved oxygen levels were lower in the same
period. The correlation between temperature and dissolved oxygen levels was negative,
with elevated temperature values coinciding with reduced dissolved oxygen levels and vice
versa (Figure 17). Notably, a comparison of predicted and measured values demonstrated
a close match, with the model accurately capturing the underlying patterns and trends in
both parameters.
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4. Discussion

The close collaboration among experts throughout the project’s various stages ensured
the practicality and reliability of the proposed methods and the results obtained. The
project’s multidisciplinary approach has resulted in the development of innovative tools
that can be effectively utilized to enhance aquaculture operations.

Aquasafe is a web-based platform designed for aquaculture management, emphasiz-
ing user-friendliness and ease of access to important information for farmers and managers
who may not have experience with complicated web applications. It enables real-time
monitoring of a wide range of parameters, including predictive modeling for fish growth,
detection of harmful algal blooms, and alerts for changes in water quality parameters.
The platform’s strength lies in its ability to integrate geospatial information with in-situ
data for comprehensive monitoring of environmental parameters, using remote sensing
data and machine learning algorithms to provide real-time information on environmental
conditions and potential risks to aquaculture operations. The platform’s strength is not in
competition with existing systems such as OxyQuard and Bioceanor for parameter moni-
toring and Aquamanager for aquaculture management but rather aims to collaborate with
these systems to achieve more sustainable aquaculture practices. By incorporating new,
innovative technologies such as remote sensing and machine learning into the platform,
Aquasafe ensures continuous and comprehensive monitoring, leading to more efficient and
sustainable management of aquaculture facilities. Overall, the novelty and advantages of
Aquasafe as a monitoring tool provide opportunities for the development of collaborative
approaches and new practices in marine aquaculture.

With respect to the growth model, applications of the Aquasafe platform were shown
for three study aquaculture areas. The model was able to depict the seasonal patterns
of growth for the considered species and yielded reasonably accurate predictions when
compared with field measurements. Moreover, it captured regional differences between
areas that are attributed to their respective environmental profiles, thus demonstrating the
capacity of the models to simulate different environments. Similar outputs were shown for
fish respiration. These features may provide a useful metric to the Aquasafe users when
considering the oxygen requirements of the fish in their farms, which in turn may lead to
timely adjustment of operations relating to feeding and population management. Lastly,
the alert-producing feature of the platform was explored via the simulation of cages with
low and high fish populations. It is clear that more work is required in refining the feature,
and detailed oxygen modeling approaches already exist ([55,56]); however, the alert output
from the platform is promising and will hopefully provide useful insights to aquaculture
operators and support risk-management decisions.

The performance of the dissolved oxygen model was evaluated by the mean absolute
error (MAE) and R-squared (R2), both of which showed promising results. The low value
of MAE (0.33) indicates high precision and accuracy of the model, while R2 was considered
adequate at 0.67 (Table 2). Although R2 is mainly used to examine the fit of the model rather
than its performance, it is still a useful measure to determine how well the model fits the
dependent variables. However, it does not provide information about the distribution of the
residuals, nor is it representative of the magnitude and direction of the error. Nonetheless,
both metrics are promising for our project.

The time-series plot showed seasonal variations in both temperature and dissolved
oxygen, highlighting the need for continuous monitoring to ensure optimal water quality
conditions for fish, especially during the summer months when the temperature reached
nearly 28 ◦C and dissolved oxygen dropped to 4.7 mg/L (Figure 16). The model was also
able to accurately detect shifts in seasonal patterns and declines in the concentration of dis-
solved oxygen that typically occur during heat waves or periods of low circulation, leading
to hypoxic events. These events can be detrimental to fish, resulting in increased mortality
and significant energetic costs associated with their stress response [57,58]. Therefore, an
accurate monitoring tool for critical environmental parameters that affect fish behavior and
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survival, such as sea surface temperature and dissolved oxygen, is crucial to detect these
rare but life-threatening events for fish.

The spatial component in aquaculture monitoring is a vital part in its effectiveness.
Resolution especially must match the scale of the farms to provide meaningful and useful
information. With a resolution of 10 m, Sentinel-2 data can provide information on sea
surface conditions for each cage, respectively, whereas the 300 m resolution of Sentinel-
3 can cover the whole farm with additional coverage of the surrounding environment.
The combined use of differential spatial resolution datasets can be utilized to monitor
the conditions within the farm but also to detect threats in a wider area which could
potentially affect the aquaculture farm. As such, their incorporation enables the system
to make both near-real-time estimations and early warning predictions. Given the limited
coastal space available for aquaculture farms, which are often clustered together either
as single operations or organized industrial parks, it is crucial for producers to monitor
dissolved oxygen levels at a broader spatial scale. This need for monitoring also applies
to administrative authorities who may wish to supervise zones of organized aquaculture
activity at the regional level.

Aquaculture farms have limited geographical footprints in a continuously varying
environment. Contrary to traditional terrestrial agriculture activities, where the parameters
that affect the health or the amount of the yield remain somewhat constant, in the marine
environment these parameters are determined at a much smaller temporal scale. Even
within a single day, the conditions can change from favorable to threatening, and as such a
steady monitoring framework is paramount for successful precision fish farming. Daily
interpolation of the dataset ensures a continuous stream of information, especially on days
with unfavorable weather which in many cases are also the ones that are threatening to the
aquaculture farms. Through the interpolation, a complete data time series is built that can
be useful for research purposes, correlating yield to environmental parameters, and can
even be used in updating and retraining the existing ones.

5. Conclusions

In conclusion, we have utilized a combination of satellite technology and in-situ data
to address the needs of the aquaculture industry. By analyzing the parameters that affect
aquaculture processes, we were able to utilize remote sensing technology to estimate
their values. Furthermore, by identifying appropriate indicators, we were able to develop
a system that alerts managers and producers to take necessary precautionary actions.
The system’s performance was rigorously evaluated through the use of three real-life
case studies. The Aquasafe web-based platform has been shown to be a valuable tool
for monitoring and managing aquaculture operations. Firstly, its user-friendly interface
allows even inexperienced users to easily access and navigate the information provided.
Secondly, the combination of data from different sources, including satellite, in-situ, and
meteorological, has allowed for improved spatial and temporal coverage. Additionally,
Aquasafe provides information on both the farm and individual cages, as well as the
surrounding environment, allowing for more effective monitoring and management. The
abovementioned functionalities make Aquasafe a useful tool for aquaculture operations of
various scales, including larger offshore farms.

However, it is important to note that this is an ongoing process. Continuous efforts
of evaluating and testing the platform to incorporate any improvements are expected to
make it even more user-friendly and effective for the aquaculture industry. The integra-
tion of data derived from UAVs, which have already been widely used in land and sea
applications [59–62], can provide a wealth of data for managing fish farms. By utilizing
cameras, sensors, and other instruments, drones can capture high-resolution images and
data on various important parameters for fish farm management such as water quality, fish
health and behavior, farm infrastructure, and environmental conditions [63–66]. Finally,
incorporating sea surface current data from remote sensing and numerical models can
provide valuable information on the direction, speed, and variability of the currents. The
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current information can help identify areas of high or low current flow, and when combined
with other aquaculture-related parameters such as water temperature, dissolved oxygen,
and chlorophyll-a, it can improve the accuracy of forecasts and alerts. Additionally, it
can help farmers to take appropriate actions, identify the potential risks and benefits of
different farm locations, and predict the effects of different management strategies.

The current investigation provides a promising framework for the development of
a comprehensive and continuous monitoring system for marine aquaculture facilities.
However, there are several areas for future research and improvement. One potential
avenue is to explore the integration of additional data sources, such as water quality
sensors or environmental data from other sources, to further enhance the accuracy and
robustness of the monitoring system. Another area of interest is to expand the geographic
scope of the investigation to other regions and aquaculture facilities, to determine the
applicability and scalability of the proposed approach in different settings. Additionally,
future research could explore the integration of advanced analytical methods, such as
artificial intelligence or deep learning, to further improve the performance and efficiency
of the monitoring system. Overall, the future scope of this investigation is to further
advance the development and implementation of innovative technologies for sustainable
and efficient management of marine aquaculture facilities.

Overall, Aquasafe represents a valuable tool for the aquaculture industry, providing a
comprehensive and user-friendly platform for effective farm management and monitoring.
With continued development and improvement, Aquasafe has the potential to greatly
enhance the sustainability and productivity of the aquaculture industry, helping to meet
the increasing demand for seafood while minimizing environmental impact.
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