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ABSTRACT
We envisage an open, extensible, and scalable data profiling
framework over various types of geospatial data, including vector,
raster and multidimensional assets. In this paper, we outline our
work in progress regarding the design and implementation of
BigDataVoyant, a software platform for profiling big geospatial
data. This software is able to ingest data in various spatial formats
and reference systems. Its main goal is to extract and visualize
a large variety of metadata and descriptions about data quality
and characteristics both in an interactive as well as in a fully au-
tomated manner. We suggest a processing flow for such profiling
and discuss a preliminary, yet comprehensive list of metadata
items already supported by the open-source software prototype
we are implementing. Finally, we outline open issues and exten-
sions of the proposed framework to broaden its usefulness and
strengthen its appeal to the geospatial data community.

1 INTRODUCTION
As the availability, the volume, and the variety of data from dif-
ferent sources grows, it is crucial for stakeholders to assess its
relevance and suitability for a given type of analyses, applications
or services. Data profiling comprises a collection of operations
and processes for extracting metadata from a given dataset and
thus facilitating decision making on its potential utilization. Such
metadata may involve schema information, statistics, samples,
or other informative summaries over the data, thus offering ex-
tensive and objective indicators for assessing datasets in terms
of business value, fitness for purpose, and quality. In addition,
a variety of visualizations (tables, charts, graphs, timelines, etc.)
may be applied against this metadata to convey the significance
and interpret the value of the underlying data.

In proprietary data catalogues, organizational data lakes, or
scientific repositories, each containing numerous and perhaps
heterogeneous data assets, offering users with search capabilities
against rich collections of their extracted metadata can greatly
facilitate data discovery. Exploring the schema, semantics, and
actual contents of open data repositories through such profiles
can also evaluate their usefulness in data integration tasks. For
data traded in marketplaces, potential consumers can examine
such profiles (especially any quality indicators) on the available
datasets, compare them, and then determine whether to purchase
and which one(s) to choose.
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This is all the more important for geospatial data, represented
not only as vectors, but also in raster or multi-dimensional for-
mats. In the context of the OpertusMundi project1, we build a
trusted, robust, and scalable pan-European geospatial data mar-
ketplace. Metadata extracted from such datasets can indicate their
coverage, timeliness, consistency, and completeness, along with
other domain-specific properties (topology, scale, resolution, etc.)
crucial for the entire lifecycle of spatial asset provision, discovery,
sharing, purchasing, and use.

Data profiling as a means of exploring, analyzing, and inter-
preting big data assets has attracted a lot of interest over the past
decade from researchers and practitioners alike. Challenges and
important use cases have been presented in recent surveys [1, 9],
which however focus on relational data, overlooking the specific
requirements of geospatial data. Among the main challenges rec-
ognized is the ability to handle input data from heterogeneous
sources and to deal with the computational complexity and scala-
bility of profiling functionalities. Interpreting the output profiles
is also challenging, since it typically requires domain expertise
and may depend on the use case (e.g., exploration, integration,
cleansing). Another recent survey [3] focuses on methods and
systems that enable automatic indexing and interactive searching
over large collections of datasets that fit users’ needs. Discover-
ing dependencies between attributes in relational data has also led
to interesting techniques. For instance, algorithms for simulta-
neously identifying unique column combinations, inclusion and
functional dependencies [6], as well as order dependencies [4]
have been proposed. Prototype systems have also been developed
for data profiling. Data Civilizer [5] extracts profiling signatures
and creates a metadata graph to facilitate discovery of joinable
datasets or those relevant to user tasks. The GOODS platform [8]
can also infer provenance metadata and annotation tags to enable
efficient and scalable discovery of datasets. Moreover, modern
platforms for data science tasks like Kaggle2 or digital market-
places like Dawex3 include data profiling mechanisms, as well as
keyword-based search for data discovery.

Admittedly, the aforementioned generic schemes lack inherent
capabilities for geospatial data profiling. Yet, GIS software plat-
forms already support Exploratory Spatial Data Analysis (ESDA).
ESDA employs spatial mining and analysis tools [2, 10] that allow
users to visualize spatial distributions, identify outliers, discover
patterns like clusters or hot spots, etc. Such tools are widely
used in full-fledged GIS platforms like ArcGIS4 and QGIS5 or

1https://www.opertusmundi.eu/
2https://www.kaggle.com/
3https://www.dawex.com/en/
4https://www.esri.com/arcgis/
5https://qgis.org/
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geospatially-aware DBMS like PostGIS6 or Oracle Spatial and
Graph7. Although powerful in capabilities, data profiling in GIS
is not streamlined, but may involve manual execution of a se-
ries of operations. Sometimes, a step-by-step user intervention is
necessary: invoke a given functionality (e.g., heatmap creation),
specify parameters, map rendering options, etc. The cost of pur-
chasing a software license may also be a hindrance, as well as
usage or programming skills.

In contrast, we propose BigDataVoyant, an open-source, inter-
active, modular, and extensible framework specifically tailored
for in-depth profiling of geospatial data. This platform aims to
extract metadata from different types of spatial assets (vector,
raster, multidimensional data) and allow data scientists to control
its degree of automation. In its interactive, step-by-step mode,
the analyst configures each operation, inspects its results, and
optionally invokes it again with revised settings for advanced,
detailed data exploration. In a fully automated mode, when trig-
gered by inexperienced users or involved in a broader process-
ing workflow (e.g., pipeline), a default or a user-preconfigured
parametrization may be applied to run profiling as a batch job.
In either mode, metadata items become progressively available
and can be graphically visualized, thus expediting spatial data
exploration. With BigDataVoyant, we aim to support efficient
and robust profiling of large geodatasets with modern processing
schemes (data partitioning, distributed processing) and provide
it as a service with a RESTful API. Overall, we deem that the rich
and extensible collection of automated metadata generated by
BigDataVoyant will offer a powerful and comprehensive means
of assessing quantity, quality, and variety in spatial data assets
for mission-critical applications and services.

2 PROFILING FRAMEWORK
As illustrated in Figure 1, we envisage a data profiling framework
that can handle large geospatial datasets of different types. We
propose to automatically extract metadata not only from vector
or raster data assets available in a variety of sources and formats
(files, DBMS, or WFS services), but also from multidimensional
scientific data having spatial reference (like meteorological, hy-
drological, or other sensor measurements). The profiler engine is
the core processing component. Using an extensible set of soft-
ware libraries and APIs, it can ingest a geospatial dataset and
apply a set of processing tasks. Each task computes metadata
according to a configuration specified by the analyst or auto-
matically determined by the system, concerning the target meta-
data and parameter settings for the task. The resulting metadata
include statistics in JSON format, geospatial features in Well-
Known Text or Binary (WKT/WKB) representations, maps as
PNG images, etc. All extracted metadata is stored in a repository
to be used for dataset search and reporting. This metadata are
also interactively visualized in a dashboard as lists, graphs, charts,
and maps of various types, uncovering latent patterns, trends,
and even issues (e.g., outliers, inconsistent or missing values)
with the data. Employing a human-in-the-loop paradigm, the data
scientist can steer or fine-tune the execution by choosing specific
metadata items of interest and adjusting their parameters in order
to delve into more detailed inspection of data characteristics.

Next, we present a non-exhaustive list of metadata items that
can be automatically extracted from several types of geospatial

6https://postgis.net/
7https://www.oracle.com/database/technologies/spatialandgraph.html

Figure 1: Processing flow for automated geodata profiling.

Table 1: Automated metadata computed over vector data

Metadata Description Scope
Native CRS Coordinate reference system (EPSG) Geometry
Spatial extent Rectilinear MBR covering all features Geometry
Feature count Number of rows (records) Dataset
Convex Hull Convex polygon enclosing all features Geometry
Concave Hull Concave polygon enclosing all features Geometry
Attribute names List of column names of all attributes Thematic
Attribute types List of data types of all attributes Thematic
Cardinality Count of NOT NULL values per attribute Thematic
Value pattern Semantic domain of values Thematic
Value distribution Frequency histogram of attribute values Thematic
𝑁 -tiles Values dividing data into 𝑁 equal parts Thematic
Distinct values List of categorical values Thematic
Frequent values top-𝑘 most frequent categorical values Thematic
Attr. dependencies Key, functional, conditional dependencies Thematic
Heatmap Colormap with varying intensity Geometry
Clusters, outliers Spatial clusters of features (e.g. POIs) Geometry
Samples Data portion(s) of limited size/extent Dataset

data. We also discuss how such metadata can be visualized as
lists, maps, charts, etc.

2.1 Profiling of Vector Data Assets
Vector datasets may include thematic attributes, whereas geome-
try is typically stored in WKT, WKB, or BLOB. Profiling of vector
data can be applied in different fashions to automatically com-
pute metadata regarding the entire data asset, its spatial attribute
(geometry), or its thematic attributes, as listed in Table 1. Next,
we briefly outline each category of such metadata.

2.1.1 Entire dataset. This examines the vector data as a whole.
For instance, it may involve computation of simple numerical
values (e.g., feature count) or extraction of data samples, either
for the entire area or a user-specified one, e.g. to allow the analyst
or potential customer to examine data quality for an area of their
interest before using or purchasing an asset.

2.1.2 Spatial attributes. These are automatically computed
against a geometry attribute, usually projected according to a
known Coordinate Reference System (CRS)8. The spatial extent
is captured by the Minimum Bounding Rectangle (MBR, BBOX)
of vectors, but is often insufficient or misleading due to the “dead
space” induced by its rectangular shape. Thus, the convex and
concave hulls of the geometries may provide further insight,
allowing users to illustrate and inspect them together with the

8Typically defined according to the EPSG registry: https://www.epsg.org
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Table 2: Automated metadata computed over raster data

Metadata Description Scope
Native CRS Coordinate reference system (EPSG) Dataset
Spatial extent Rectangle with the image bounds Raster
Resolution Pixel size (e.g., in meters) per axis Raster
Width, Height Number of pixels per axis Raster
Bands Count of the available bands Raster
Value distribution Histogram(s) of raster values Band
Band statistics Min, max, avg, stdev, etc. of raster values Band
COG Boolean: is Cloud Optimized GeoTIFF? Raster
Pixel (bit) depth Integer denoting the range of values stored Band
NoData Special value(s) denoting NoData pixels Band
Samples Custom portion(s) by user-specified box Raster

MBR and better assess the spatial coverage of a given asset. Exam-
ining the spatial data distribution may be even more informative.
Features like clustering (e.g., using DBSCAN [7]) or heatmaps,
computed over the geometries can reveal concentration, density
and other spatial patterns [10] in the underlying features, e.g.,
hotpots for certain POI categories like bars or shops.

2.1.3 Thematic Attributes. For this part, relational data pro-
filing can be applied [1]. A list of the available attributes and
their data types (e.g., string, integer, double, date, timestamp, etc.)
can illustrate the schema. Further, for each thematic attribute,
the number or percentage of missing values, and its cardinality
(i.e., the number of distinct values) can be computed. When de-
picted in a histogram or a chart, they can illustrate the quality of
data across all attributes and possibly even indicate correlations
amongst them. Classification of the semantic domain for certain
attributes (e.g., phone numbers, web pages, names, etc.) may be
also examined. This requires knowledge of specific patterns that
can be progressively collected from the corpus of data assets
handled by the profiler.

For a particular thematic attribute, extra processing can pro-
vide the distribution of its values, depicted as frequency his-
tograms (equi-width, equi-depth, V-optimal, etc.). For numerical
attributes, 𝑁 -tiles (e.g., quartiles) may be also provided. For a
categorical attribute (e.g., POI categories or road classifications),
lists of the distinct or most frequent values may further convey
its representativeness.

Discovery of attribute dependencies, such as key or functional
dependencies, concerns multi-attribute profiling [6]. Such fea-
tures may indicate that values in one set of columns function-
ally determine the value of another column, e.g., specific POI
categories like pharmacies always include phone numbers for
emergency calls. Other dependencies may be conditional, e.g.
street names are unique for each city or postal code.

2.2 Profiling of Raster Data Assets
Raster data includes digital aerial photographs, satellite imagery,
scanned maps, etc., typically organized in one or more bands.
For example, a color RGB image has three bands (Red, Green,
Blue), a digital elevation model (DEM) just one holding elevation
values, whereas a multispectral image may have many bands.
Table 2 lists some automated metadata that may be extracted
from rasters.

Certainmetadata items are similar to those proposed for vector
data (e.g., spatial extent, native CRS, sampling). However, since
rasters are tessellations of a 2-d surface into cells (pixels), raster
profiling tools require different functionality from that applied
against vectors. Besides, some information may not be always

Table 3: Automated metadata over multidimensional data

Metadata Description Scope
Native CRS Coordinate reference system (EPSG) Dataset
Dimension count Number of dimensions in the dataset Dataset
Dimension info Name, length, etc. of each dimension Dataset
Variable count Number of variables in the dataset Dataset
Variable info Name, type, shape, attributes per variable Dataset
Spatial extent Range of values per spatial dimension Variable
Temporal range Timespan of stored values per variable Variable
Value distribution Histogram of values per variable Variable
NoData Special value(s) denoting NoData Variable
Samples Custom portion(s) by user preferences Dataset

possible to calculate. For instance, native CRS for a TIFF image
may be unknown if its accompanying .tfw file does not include
it in its header. Spatial extent (MBR, BBOX) may be deduced
from the original raster without reprojection. If the native CRS
is known, raster resolution can be accompanied with units of
measurement.

Raster-specific metadata concerns resolution, image size, as
well as whether the imagery is COG (i.e., Cloud Optimized Geo-
TIFF). Information about NoData values is also important; this is
typically a specially designated value (e.g., None, -999) to indicate
missing information and could differ per band.

Finally, band-related metadata concern the number of bands,
the data type/depth of each one, and statistics (min, max, avg,
stdev, etc.) of values per band. A default histogram of cell values
per band can give a more detailed insight about raster quality.

2.3 Profiling of Multidimensional Data Assets
Multidimensional data is typically used to store environmental,
climate, or meteorological information with measurements for
multiple variables, with NetCDF9 its most common representa-
tive. Dimensions (each with a name and a length) are used to
represent real physical dimensions, such as time, latitude, lon-
gitude, or elevation, and define the structure of data. Variables
(each specified with a name, a type, a shape, and often accom-
panied by their units) hold multi-dimensional arrays of values
of the same type. Profiling of such data assets involves some
automatically extracted metadata that are common with vector
and raster data, but due to the inherent complexity in this data
format, it requires specialized handling. Table 3 lists automated
metadata extractable from multidimensional data assets, with
some of them concerning the entire dataset (e.g. native CRS)
while others are computed over individual variables.

Histograms (one per variable) may be created in order to visu-
alize the distribution of the values. In addition, special attributes
(such as “missing_value” and “_FillValue” in netCDF files) may be
used to identify missing or undefined data; these values should
be treated like the NoData ones in raster layers. It may also be
possible to extract metadata features depending on the type of
the variables in the dataset. For example, considering the time
dimension, identify the time granularity of data per variable,
any gaps in measurements, etc. Such information is valuable for
potential users in order to assess the coverage, timespan, and
completeness per variable of interest in such multidimensional
data. Finally, extraction of ad-hoc samples according to user pref-
erences, such as a rectangular area of interest or an interval on a
given dimension (e.g., a time period), should be also possible.

9https://www.unidata.ucar.edu/software/netcdf/
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3 IMPLEMENTATION STATUS & OUTLOOK
In the context of the OpertusMundi project, we are developing
an open-source prototype for BigDataVoyant10. Current func-
tionality mostly concerns its profiler engine, which leverages
various Python libraries to offer an API for automated metadata
extraction andmanipulation. Python offers a robust, user-friendly
environment for data scientists, and its ecosystem includes many
popular libraries for geospatial data processing and visualization.
Existing profiling tools11 in Python are mostly based on Pandas12
and unfortunately do not support geospatial data. We considered
extending them, but Pandas frames do not scale for large datasets.
Besides, its spatial extension GeoPandas can only handle vectors
and its performance over complex geometries is slow.

As scalability is a major concern in BigDataVoyant, we opted
for another solution by extending the memory-efficient Vaex
library13 with spatial capabilities. Presently, we actually support
all types of 2-dimensional vector geometries, like (multi)points,
(multi)linestrings, (multi)polygons, collections, etc. according to
OGC specifications14. At a later stage, we plan to handle vector
data with 𝑑 > 2 dimensions, e.g., road segments with linear
referencing. If necessary, we will also consider extra metadata
features for particular applications, e.g., examine whether a road
network is connected and can support routing. On top of this
GeoVaex extension15 we have been building for vector data, a
beta version of our profiler can automatically extract most of the
metadata in Table 1 for moderately large datasets. Further, we
employ GDAL/OGR16 to support raster data profiling (Table 2)
for a wide range of file formats, and netCDF4 Python module17
for multidimensional data profiling (Table 3).

Parameters like number of clusters or histogram buckets, weight
and radius for heatmaps, etc., are currently configured manually.
Wewill examinewhether this could be automated in a data-driven
manner according to data characteristics (e.g., size, spatial extent).
Besides, some methods are applicable on specific geometry types
(e.g., concave hulls on points only), so such data conversions are
handled in the background without user intervention.

Of course, scalability against very large spatial datasets is the
main challenge. Although the libraries employed in profiling
can generally scale to big datasets, computation of certain meta-
data requires particular handling, especially where some kind of
spatial aggregation is involved. For instance, special algorithms
are needed to treat alpha shapes in the whole dataset, compute
heatmaps or clusters, etc., when data partitioning is applied to
boost computation efficiency. Initial tests of our approach em-
ploying GeoVaex verify its strong potential in terms of scalability
and efficiency. Figure 2 exemplifies a subset of metadata auto-
matically computed over a large vector dataset extracted from
OpenStreetMap with more than 25 million polygons in Germany,
and visualized in a dashboard. Once the software reaches a stable
level, we plan an extensive empirical study against real-world
geodatasets of various types and formats.

Data cleansing and detection of outliers is also challenging,
mostly regarding the spatial aspect (geometries, pixels) in large
data collections. We intend to use clustering results and seclude

10Publicly available at https://github.com/OpertusMundi/BigDataVoyant
11E.g., https://github.com/pandas-profiling/
12https://pandas.pydata.org/
13https://vaex.readthedocs.io
14https://www.ogc.org/standards/sfa
15https://github.com/OpertusMundi/geovaex
16https://gdal.org/
17https://unidata.github.io/netcdf4-python/netCDF4/index.html

Figure 2: Visualization of automated metadata profiling
a vector dataset of 25 million polygons (buildings in Ger-
many) extracted from OpenStreetMap.

features that stand out, accompanied by an ‘outlier confidence
weight’, whichwill be apparently affected by the parameter values
set in the algorithm. We deem that this will offer data scientists
and stakeholders a precious tool to identify possible errors in the
data, refine their analyses, and improve quality in their products.

Finally, this spatial data profiling is extensible thanks to the
modular design of BigDataVoyant. Although our proposed col-
lection of automated metadata is already rich and covers diverse
types of geospatial data assets, extra features may be added based
on feedback from stakeholders in the geospatial value chain and
open source developers. Complementing them with intuitive,
interactive visualizations will further improve the cognitive in-
terpretation and reveal latent aspects in the geospatial data.
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